国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文OA文獻(xiàn) >Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods
【2h】

Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods

機(jī)譯:用于切換狀態(tài)空間模型的高效貝葉斯推理 ??離散粒子馬爾可夫鏈蒙特卡羅方法

代理獲取
本網(wǎng)站僅為用戶提供外文OA文獻(xiàn)查詢和代理獲取服務(wù),本網(wǎng)站沒有原文。下單后我們將采用程序或人工為您竭誠獲取高質(zhì)量的原文,但由于OA文獻(xiàn)來源多樣且變更頻繁,仍可能出現(xiàn)獲取不到、文獻(xiàn)不完整或與標(biāo)題不符等情況,如果獲取不到我們將提供退款服務(wù)。請知悉。

摘要

Switching state-space models (SSSM) are a very popular class of time seriesmodels that have found many applications in statistics, econometrics andadvanced signal processing. Bayesian inference for these models typicallyrelies on Markov chain Monte Carlo (MCMC) techniques. However, evensophisticated MCMC methods dedicated to SSSM can prove quite inefficient asthey update potentially strongly correlated discrete-valued latent variablesone-at-a-time (Carter and Kohn, 1996; Gerlach et al., 2000; Giordani and Kohn,2008). Particle Markov chain Monte Carlo (PMCMC) methods are a recentlydeveloped class of MCMC algorithms which use particle filters to buildefficient proposal distributions in high-dimensions (Andrieu et al., 2010). Theexisting PMCMC methods of Andrieu et al. (2010) are applicable to SSSM, but arerestricted to employing standard particle filtering techniques. Yet, in thecontext of discrete-valued latent variables, specialised particle techniqueshave been developed which can outperform by up to an order of magnitudestandard methods (Fearnhead, 1998; Fearnhead and Clifford, 2003; Fearnhead,2004). In this paper we develop a novel class of PMCMC methods relying on thesevery efficient particle algorithms. We establish the theoretical validy of thisnew generic methodology referred to as discrete PMCMC and demonstrate it on avariety of examples including a multiple change-points model for well-log dataand a model for U.S./U.K. exchange rate data. Discrete PMCMC algorithms areshown to outperform experimentally state-of-the-art MCMC techniques for a fixedcomputational complexity. Additionally they can be easily parallelized (Lee etal., 2010) which allows further substantial gains.
機(jī)譯:交換狀態(tài)空間模型(SSSM)是一類非常流行的時間序列模型,已在統(tǒng)計,計量經(jīng)濟(jì)學(xué)和高級信號處理中找到了許多應(yīng)用。這些模型的貝葉斯推斷通常依賴于馬爾可夫鏈蒙特卡洛(MCMC)技術(shù)。但是,即使是專門用于SSSM的復(fù)雜的MCMC方法也可能效率不高,因為它們一次一次更新潛在強(qiáng)相關(guān)的離散值潛變量(Carter和Kohn,1996; Gerlach等,2000; Giordani和Kohn,2008)。粒子馬爾可夫鏈蒙特卡羅(PMCMC)方法是最近開發(fā)的一類MCMC算法,該算法使用粒子濾波器在高維中構(gòu)建有效的建議分布(Andrieu等,2010)。 Andrieu等人現(xiàn)有的PMCMC方法。 (2010年)適用于SSSM,但僅限于采用標(biāo)準(zhǔn)的粒子過濾技術(shù)。然而,在離散值潛變量的背景下,已經(jīng)開發(fā)出了可以通過一個數(shù)量級標(biāo)準(zhǔn)方法勝過某些特殊粒子技術(shù)的方法(Fearnhead,1998; Fearnhead和Clifford,2003; Fearnhead,2004)。在本文中,我們依靠這些非常有效的粒子算法開發(fā)了一類新型的PMCMC方法。我們建立了這種稱為離散PMCMC的新通用方法論的理論有效性,并通過各種示例進(jìn)行了論證,其中包括用于測井?dāng)?shù)據(jù)的多個變更點模型和用于美國/英國的模型。匯率數(shù)據(jù)。對于固定的計算復(fù)雜度,離散PMCMC算法的性能優(yōu)于實驗最新的MCMC技術(shù)。另外,它們可以很容易地并行化(Lee et al。,2010),這可以帶來更大的收益。

著錄項

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號